index.html
2.32 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
<!doctype html>
<title>CodeMirror: Mathematica mode</title>
<meta charset="utf-8" />
<link rel=stylesheet href="../../doc/docs.css">
<link rel=stylesheet href=../../lib/codemirror.css>
<script src=../../lib/codemirror.js></script>
<script src=../../addon/edit/matchbrackets.js></script>
<script src=mathematica.js></script>
<style type=text/css>
.CodeMirror {
border-top: 1px solid black;
border-bottom: 1px solid black;
}
</style>
<div id=nav>
<a href="http://codemirror.net">
<h1>CodeMirror</h1>
<img id=logo src="../../doc/logo.png">
</a>
<ul>
<li>
<a href="../../index.html">Home</a>
<li>
<a href="../../doc/manual.html">Manual</a>
<li>
<a href="https://github.com/codemirror/codemirror">Code</a>
</ul>
<ul>
<li>
<a href="../index.html">Language modes</a>
<li>
<a class=active href="#">Mathematica</a>
</ul>
</div>
<article>
<h2>Mathematica mode</h2>
<textarea id="mathematicaCode"> (* example Mathematica code *) (* Dualisiert wird anhand einer Polarität an einer Quadrik $x^t Q x = 0$ mit regulärer Matrix $Q$ (also mit $det(Q) \neq 0$), z.B. die Identitätsmatrix. $p$ ist eine Liste von Polynomen - ein Ideal. *) dualize::"singular"
= "Q must be regular: found Det[Q]==0."; dualize[ Q_, p_ ] := Block[ { m, n, xv, lv, uv, vars, polys, dual }, If[Det[Q] == 0, Message[dualize::"singular"], m = Length[p]; n = Length[Q] - 1; xv = Table[Subscript[x, i], {i, 0, n}]; lv = Table[Subscript[l,
i], {i, 1, m}]; uv = Table[Subscript[u, i], {i, 0, n}]; (* Konstruiere Ideal polys. *) If[m == 0, polys = Q.uv, polys = Join[p, Q.uv - Transpose[Outer[D, p, xv]].lv] ]; (* Eliminiere die ersten n + 1 + m Variablen xv und lv aus dem Ideal polys.
*) vars = Join[xv, lv]; dual = GroebnerBasis[polys, uv, vars]; (* Ersetze u mit x im Ergebnis. *) ReplaceAll[dual, Rule[u, x]] ] ] </textarea>
<script>
var mathematicaEditor = CodeMirror.fromTextArea(document.getElementById('mathematicaCode'),
{
mode: 'text/x-mathematica',
lineNumbers: true,
matchBrackets: true
});
</script>
<p>
<strong>MIME types defined:</strong> <code>text/x-mathematica</code> (Mathematica).</p>
</article>